Investigations of the Electrochemical Stability of Aqueous Electrolytes for Lithium Battery Applications
نویسندگان
چکیده
The electrolytic stability windows of several aqueous electrolytes were investigated by a constant current method. The electrode potential range depended upon the value of the imposed current. The magnitude of this behavior varied with the salt solution, its concentration, and pH of the electrolyte. At a leakage current density of 50 A/cm2, a 5 M solution of LiNO3 had an electrolytic window of 2.3 V, spanning from 0.55 to 1.75 V with respect to the standard hydrogen electrode. These results demonstrate the feasibility of operating lithium batteries at voltages appreciably above the theoretical decomposition voltage of water. © 2010 The Electrochemical Society. DOI: 10.1149/1.3329652 All rights reserved.
منابع مشابه
Theoretical Assessment of the First Cycle Transition, Structural Stability and Electrochemical Properties of Li2FeSiO4 as a Cathode Material for Li-ion Battery
Lithium iron orthosilicate (Li2FeSiO4) with Pmn21 space group is theoritically investigated as a chathode material of Li-ion batteries using density functional theory (DFT) calculations. PBE-GGA (+USIC), WC-GGA, L(S)DA (+USIC) and mBJ+LDA(GGA) methods under spin-polarization ferromagnetic (FM) and anti-ferromagnetic (AFM) procedure are used to investigate the material properties, includin...
متن کاملNon-aqueous Electrolytes and Interfacial Chemistry in Lithium- ion Batteries
Xu, C. 2017. Non-aqueous Electrolytes and Interfacial Chemistry in Lithium-ion Batteries. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1525. 72 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9931-0. Lithium-ion battery (LIB) technology is currently the most promising candidate for power sources in applications such as portable...
متن کاملElectrochemical behavior of LiCoO2 as aqueous lithium-ion battery electrodes
Despite the large number of studies on the behavior of LiCoO2 in organic electrolytes and its recent application as a positive electrode in rechargeable water battery prototypes, a little information is available about the lithium intercalation reaction in this layered compound in aqueous electrolytes. This work shows that LiCoO2 electrodes can be reversibly cycled in LiNO3 aqueous electrolytes...
متن کامل"Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries.
Lithium-ion batteries raise safety, environmental, and cost concerns, which mostly arise from their nonaqueous electrolytes. The use of aqueous alternatives is limited by their narrow electrochemical stability window (1.23 volts), which sets an intrinsic limit on the practical voltage and energy output. We report a highly concentrated aqueous electrolyte whose window was expanded to ~3.0 volts ...
متن کاملElectrochemical Characterization of Low-Cost Lithium-Iron Orthosilicate Samples as Cathode Materials of Lithium-Ion Battery
Lithium-iron-orthosilicate is one of the most promising cathode materials for Li-ion batteries due to its safety, environmental brightness and potentially low cost. In order to produce a low cost cathode material, Li2FeSiO4/C samples are synthesized via sol-gel (SG; one sample) and solid state (SS; two samples with different carbon content), starting from Fe (III) in the raw materials (lo...
متن کامل